Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

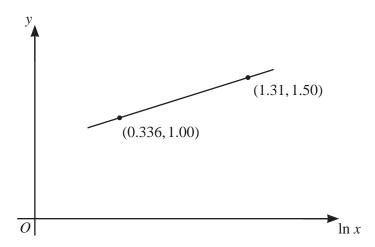
You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION


- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

coefficients.	$(x)(1-2x)^{\frac{1}{2}}$ in ascending powers of x, up to a	[4]
•••••		

••	
••	
•	
••	
••	
••	
••	
••	
••	
••	
••	
••	

3

The variables x and y satisfy the equation $a^y = bx$, where a and b are constants. The graph of y against $\ln x$ is a straight line passing through the points (0.336, 1.00) and (1.31, 1.50), as shown in the diagram.

Find the values of a and b. Give each value correct to the nearest integer.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

)	Express u in the form $r(\cos\theta + i\sin\theta)$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact value and θ .	tes of r [2]
		•••••
		••••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••
e	e complex number v is given by $v = 5\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)$.	•••••
	e complex number v is given by $v = 5\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)$. Express the complex number $\frac{v}{u}$ in the form $re^{i\theta}$ where $r > 0$ and $-\pi < \theta \le \pi$.	[2
		[2]
		[2]
		[2,
		[2]
		[2
		[2]
		[2
		[2]
		[2]
		[2]

5	The equation of a curve is	is $y = \frac{e^{\sin x}}{\cos^2 x}$ for $0 \le x \le$	2π
		COS A	

Find $\frac{dy}{dx}$ and hence find the x-coordinates of the stationary points of the curve.	[7]
	••••••
	••••••

© UCLES 2024

6	(a)	By sketching a suitable pair of graphs, show that the equation $\csc \frac{1}{2}x = e^x - 3$ has exactly	one
		root, denoted by α , in the interval $0 < x < \pi$.	[2]

(b)	Verify by calculation that α lies between 1 and 2.	2]
		••
		••
		••

(c)	Show that if a sequence of values in the interval $0 \le x \le \pi$ given by the iterative formula
	$x_{n+1} = \ln\left(\csc\frac{1}{2}x_n + 3\right)$
	converges, then it converges to α .
(d)	Use this iterative formula with an initial value of 1.4 to determine α correct to 2 decimal places. [3]
(e)	State the minimum number of calculated iterations needed with this initial value to determine correct to 2 decimal places.

10

BLANK PAGE

7	(a)	On a single Argand diagram sketch the loci given by the equations $ z-3+2i =2$ and	
		w-3+2i = w+3-4i where z and w are complex numbers.	[4]

Hence find the least value of $ z-w $ for points on these loci. Give your answer in an exact form. [2]

8 Use the substitution $u = 1 - \sin x$ to find the exact value of

$$\int_{\pi}^{\frac{3}{2}\pi} \frac{\sin 2x}{\sqrt{1-\sin x}} \, \mathrm{d}x.$$

Give your answer in the form $a + b\sqrt{2}$ where a and b are rational numbers to be determined. [7]

• • • • • • •
• • • • • • •
• • • • • • • • • • • • • • • • • • • •
•••••
 •••••
•••••
• • • • • • •
•••••
• • • • • • •
•••••
•••••

 ${\bf 9} \quad \text{ The equations of two straight lines l_1 and l_2 are}$

$$l_1\colon \quad \mathbf{r}=\mathbf{i}-2\mathbf{j}+3\mathbf{k}+\lambda(2\mathbf{i}-\mathbf{j}+a\mathbf{k}) \qquad \text{and} \qquad l_2\colon \quad \mathbf{r}=-\mathbf{i}-\mathbf{j}-\mathbf{k}+\mu(3\mathbf{i}-2\mathbf{j}-2\mathbf{k}),$$

where a is a constant.

The lines \boldsymbol{l}_1 and \boldsymbol{l}_2 are perpendicular.

(a)	Show that $a = 4$. [1]
The	lines l_1 and l_2 also intersect.
(b)	Find the position vector of the point of intersection. [4]

The	The point A has position vector $-5\mathbf{i} + \mathbf{j} - 9\mathbf{k}$.		
(c) Show that A lies on l_1 .			
	Show that A lies on l_1 .		
The	point P is the image of A ofter a reflection in the line I		
The	point B is the image of A after a reflection in the line l_2 .		
(d)	Find the position vector of B . [2]		

10	()	Given that $2x = \tan y$, show that	$\frac{3}{\mathrm{d}x} = \frac{2}{1 + 4x^2} \ .$	[3]
	(b)	Hence find the exact value of	$\int_{0}^{2} x \tan^{-1}(2x) dx.$	[7]
		$J_{\frac{1}{2}}$	•	
		Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{y}{2}}$		
		J±2		
		J _{1/2}		

11	In a field there are 300 plants of a certain species, all of which can be infected by a particular disease. At time t after the first plant is infected there are x infected plants. The rate of change of x is proportional to the product of the number of plants infected and the number of plants that are not yet infected. The variables x and t are treated as continuous, and it is given that $\frac{dx}{dt} = 0.2$ and t are 1 when t = 0.			
	(a)	Show that x and t satisfy the differential equation		
		$1495 \frac{\mathrm{d}x}{\mathrm{d}t} = x (300 - x). \tag{2}$		
	(b)	Using partial fractions, solve the differential equation and obtain an expression for t in terms of a single logarithm involving x . [9]		

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
 •
 ••••••
 •
 •
 •
 •
• • • • • • • • • • • • • • • • • • • •
 •
••••••
••••••
,
••••••
••••••
,

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by convright is included has been sought and cleared where possible. Every

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.